Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
J Cancer Res Clin Oncol ; 150(4): 206, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644421

RESUMO

PURPOSE: Periodontitis-associated bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are closely linked to the risk of oral squamous cell carcinoma (OSCC). Emerging studies have indicated that another common periodontal pathogen, Prevotella intermedia (P. intermedia), is enriched in OSCC and could affect the occurrence and progression of OSCC. Our aim is to determine the effects of P. intermedia on the progression of OSCC and the role of antibiotics in reversing these effects. METHODS: In this study, a murine xenograft model of OSCC was established, and the mice were injected intratumorally with PBS (control group), P. intermedia (P.i group), or P. intermedia combined with an antibiotic cocktail administration (P.i + ABX group), respectively. The effects of P. intermedia and ABX administration on xenograft tumor growth, invasion, angiogenesis, and metastasis were investigated by tumor volume measurement and histopathological examination. Enzyme-linked immunosorbent assay (ELISA) was used to investigate the changes in serum cytokine levels. Immunohistochemistry (IHC) was adopted to analyze the alterations in the levels of inflammatory cytokines and infiltrated immune cells in OSCC tissues of xenograft tumors. Transcriptome sequencing and analysis were conducted to determine differential expression genes among various groups. RESULTS: Compared with the control treatment, P. intermedia treatment significantly promoted tumor growth, invasion, angiogenesis, and metastasis, markedly affected the levels of inflammatory cytokines, and markedly altered M2 macrophages and regulatory T cells (Tregs) infiltration in the tumor microenvironment. However, ABX administration clearly abolished these effects of P. intermedia. Transcriptome and immunohistochemical analyses revealed that P. intermedia infection increased the expression of interferon-stimulated gene 15 (ISG15). Correlation analysis indicated that the expression level of ISG15 was positively correlated with the Ki67 expression level, microvessel density, serum concentrations and tissue expression levels of inflammatory cytokines, and quantities of infiltrated M2 macrophages and Tregs. However, it is negatively correlated with the quantities of infiltrated CD4+ and CD8+ T cells. CONCLUSION: In conclusion, intratumoral P. intermedia infection aggravated OSCC progression, which may be achieved through upregulation of ISG15. This study sheds new light on the possible pathogenic mechanism of intratumoral P. intermedia in OSCC progression, which could be a prospective target for OSCC prevention and treatment.


Assuntos
Citocinas , Progressão da Doença , Neoplasias Bucais , Prevotella intermedia , Ubiquitinas , Regulação para Cima , Animais , Camundongos , Citocinas/metabolismo , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/microbiologia , Ubiquitinas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Infecções por Bacteroidaceae/microbiologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/tratamento farmacológico , Antibacterianos/farmacologia
2.
ACS Infect Dis ; 10(4): 1152-1161, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442009

RESUMO

Periodontitis, a chronic infectious disease in periodontal tissues, is characterized by an imbalance of alveolar bone resorption and remodeling, which eventually results in tooth loosening and even tooth loss. The etiology of periodontitis is polymicrobial synergy and dysbiosis, in which Porphyromonas gingivalis (P. gingivalis) is one of the primary pathogens responsible for periodontitis progression. The interplay of EphrinB2/EphB4 is crucial for osteoblast-osteoclast communication during bone remodeling and healing. This study investigates the mechanism of EphB4/EphrinB2 transduction modulating osteogenesis inhibition and bone resorption in periodontitis induced by P. gingivalis. An in vivo model of chronic periodontitis provoked by P. gingivalis was constructed, the inflammation and bone resorption were evaluated. The expression of EphB4 and EphrinB2 proteins in periodontal tissues was detected, which was also evaluated, respectively, in osteoblasts and osteoclasts infected with P. gingivalis in vitro. Then, a simulated coculture model of osteoblasts and osteoclasts was established to activate the forward and reverse pathways of EphB4/EphrinB2 with P. gingivalis infection. This study showed that P. gingivalis infection promoted alveolar bone resorption in rats and enhanced EphB4 and EphrinB2 expression in periodontal tissues. EphB4 and molecules associated with osteogenesis in osteoblasts infected with P. gingivalis were inhibited, while EphrinB2 and osteoclast differentiation-related markers in osteoclasts were activated. In conclusion, this study suggested that EphB4/EphrinB2 proteins were involved in alveolar bone remodeling in the process of periodontitis induced by P. gingivalis infection. Moreover, attenuated EphB4/EphrinB2 with P. gingivalis infection weakened osteoblast activity and enhanced osteoclast activity.


Assuntos
Reabsorção Óssea , Periodontite , Receptor EphB2 , Receptor EphB4 , Animais , Ratos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/microbiologia , Osteoclastos/metabolismo , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Transdução de Sinais , Receptor EphB2/metabolismo , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia
4.
Arch Oral Biol ; 140: 105466, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35640321

RESUMO

OBJECTIVE: Implication of human caspase-4 in periodontitis and in sensing periodontal pathogens by gingival epithelial cells (GECs) is unclear. This study aimed to determine caspase-4 and interleukin (IL)-18 expressions in gingival tissues affected with periodontitis and to investigate caspase-4 involvement in mediating innate immune responses in GECs. DESIGN: Ex vivo, caspase-4 and IL-18 expressions in gingival biopsies, obtained from healthy participants with periodontitis or clinically healthy gingiva (N = 20 each), were determined by immunohistochemistry. In vitro, caspase-4 activation in cultured GECs stimulated with Porphyromonas gingivalis or Fusobacterium nucleatum was analyzed by immunoblotting. mRNA expressions of human ß-defensin-2 (hBD-2), IL-8, and IL-18 in stimulated GECs in the presence or absence of a caspase-4 inhibitor were assayed by RT-qPCR. RESULTS: Ex vivo, compared with healthy gingival epithelium, the epithelium affected with periodontitis displayed a significant decrease in caspase-4 expression (P = 0.015), whereas IL-18 expression was significantly increased (P = 0.012). Moreover, the expression of caspase-4, but not IL-18, was found to be a predictor of periodontitis (P = 0.007). In vitro, caspase-4 was activated in cultured GECs challenged with P. gingivalis, but not F. nucleatum. mRNA upregulations of hBD-2, IL-8, and IL-18 upon P. gingivalis stimulation were significantly reduced when caspase-4 was inhibited (P < 0.05), whereas the inhibitor failed to suppress those inductions by F. nucleatum. CONCLUSIONS: Caspase-4 expression is diminished in the epithelium affected with periodontitis while that of IL-18 is enhanced. Caspase-4 activation in P. gingivalis-infected GECs upregulates the three innate immune effector molecules, suggesting a possible sensing mechanism of caspase-4 in GECs in periodontal disease pathogenesis.


Assuntos
Infecções por Bacteroidaceae , Caspases Iniciadoras , Gengiva , Periodontite , Porphyromonas gingivalis , Infecções por Bacteroidaceae/enzimologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Caspases Iniciadoras/biossíntese , Células Cultivadas , Epitélio/enzimologia , Epitélio/microbiologia , Epitélio/patologia , Gengiva/enzimologia , Gengiva/microbiologia , Gengiva/patologia , Humanos , Interleucina-18/biossíntese , Interleucina-8/biossíntese , Periodontite/enzimologia , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/metabolismo , RNA Mensageiro/metabolismo
5.
J Immunol Res ; 2022: 6839356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224112

RESUMO

Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman's correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (p < 0.001), C-reactive protein (p < 0.001), matrix metalloproteinase-3 (p < 0.001), and IL-6 (p = 0.001), and were inversely correlated with hemoglobin (p = 0.005). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (p = 0.002) and painVAS (p < 0.001). Total bacteria counts were correlated with ENC (p < 0.001), and inversely correlated with serum LPS (p < 0.001) and anti-Pg-LPS IgA antibody levels (p < 0.001). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.


Assuntos
Artrite Reumatoide/microbiologia , Infecções por Bacteroidaceae/microbiologia , Disbiose/microbiologia , Boca/microbiologia , Porphyromonas gingivalis/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Artrite Reumatoide/imunologia , Autoanticorpos/sangue , Carga Bacteriana , Infecções por Bacteroidaceae/imunologia , Biomarcadores/metabolismo , Proteínas de Transporte/metabolismo , Estudos Transversais , Disbiose/imunologia , Feminino , Microbioma Gastrointestinal , Humanos , Imunoglobulina A/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade
6.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992142

RESUMO

Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Animais , Fímbrias Bacterianas/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Laboratórios , Camundongos , Porphyromonas gingivalis/patogenicidade , Transcriptoma , Virulência/genética , Fatores de Virulência
7.
Bioengineered ; 13(2): 2336-2345, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35034548

RESUMO

Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is a novel pro-inflammatory factor in severe human diseases. Since inflammatory plays important roles in periodontitis progression, we aimed to explore the role of NEAT1 in chronic periodontitis (CP) in vitro. We established a periodontitis cell model was established by Porphyromonas gingivalis lipopolysaccharide (Pg-LPS)-induced periodontal ligament cells (PDLCs). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression of NEAT1, microRNA (miR)-200c-3p, and tumor necrosis factor receptor-associated factor 6 (TRAF6). Cell viability, inflammatory factors, and protein expression of Bcl-2, Bax, and TRAF6 were analyzed by MTT, enzyme-linked immunosorbent assay, and Western blot. The target relationships among NEAT1, miR-200c-3p, and TRAF6 were predicted by the StarBase/TargetScan software, and further validated by dual-luciferase reporter assay. In this research, NEAT1 is up-regulated in CP tissues and periodontitis model group. Silencing of NEAT1 and over-expression of miR-200c-3p enhanced cell viability and repressed apoptosis in the periodontitis model group. NEAT1 targets miR-200c-3p, and miR-200c-3p further targets TRAF6. MiR-200c-3p inhibitor or over-expression of TRAF6 reversed the promoting effect of NEAT1 knockdown on cell viability, and the inhibiting effects on inflammatory cytokines and cell apoptosis. Consequently, the silencing of NEAT1 inhibits inflammation and apoptosis via targeting miR-200c-3p/TRAF6 axis, thereby contributing to alleviate the progression of CP. This finding could provide an underlying target for the treatment of CP.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Periodontite Crônica/metabolismo , Modelos Biológicos , Ligamento Periodontal/metabolismo , Porphyromonas gingivalis/metabolismo , RNA Longo não Codificante/metabolismo , Infecções por Bacteroidaceae/microbiologia , Periodontite Crônica/microbiologia , Feminino , Humanos , Masculino , Ligamento Periodontal/microbiologia , RNA Longo não Codificante/genética
8.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614064

RESUMO

Periodontitis is a non-communicable chronic inflammatory disease characterized by the progressive and irreversible breakdown of the soft periodontal tissues and resorption of teeth-supporting alveolar bone. The etiology of periodontitis involves dysbiotic shifts in the diversity of microbial communities inhabiting the subgingival crevice, which is dominated by anaerobic Gram-negative bacteria, including Porphyromonas gingivalis. Indeed, P. gingivalis is a keystone pathogen with a repertoire of attributes that allow it to colonize periodontal tissues and influence the metabolism, growth rate, and virulence of other periodontal bacteria. The pathogenic potential of P. gingivalis has been traditionally analyzed using classical biochemical and molecular approaches. However, the arrival of new techniques, such as whole-genome sequencing, metagenomics, metatranscriptomics, proteomics, and metabolomics, allowed the generation of high-throughput data, offering a suitable option for bacterial analysis, allowing a deeper understanding of the pathogenic properties of P. gingivalis and its interaction with the host. In the present review, we revise the use of the different -omics technologies and techniques used to analyze bacteria and discuss their potential in studying the pathogenic potential of P. gingivalis.


Assuntos
Infecções por Bacteroidaceae , Periodontite , Humanos , Porphyromonas gingivalis/genética , Infecções por Bacteroidaceae/microbiologia , Periodontite/patologia , Virulência , Metabolômica
9.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884507

RESUMO

Streptococcus pneumoniae is an important causative organism of respiratory tract infections. Although periodontal bacteria have been shown to influence respiratory infections such as aspiration pneumonia, the synergistic effect of S. pneumoniae and Porphyromonas gingivalis, a periodontopathic bacterium, on pneumococcal infections is unclear. To investigate whether P. gingivalis accelerates pneumococcal infections, we tested the effects of inoculating P. gingivalis culture supernatant (PgSup) into S. pneumoniae-infected mice. Mice were intratracheally injected with S. pneumoniae and PgSup to induce pneumonia, and lung histopathological sections and the absolute number and frequency of neutrophils and macrophages in the lung were analyzed. Proinflammatory cytokine/chemokine expression was examined by qPCR and ELISA. Inflammatory cell infiltration was observed in S. pneumoniae-infected mice and S. pnemoniae and PgSup mixed-infected mice, and mixed-infected mice showed more pronounced inflammation in lung. The ratios of monocytes/macrophages and neutrophils were not significantly different between the lungs of S. pneumoniae-infected mice and those of mixed-infected mice. PgSup synergistically increased TNF-α expression/production and IL-17 production compared with S. pneumoniae infection alone. We demonstrated that PgSup enhanced inflammation in pneumonia caused by S. pneumoniae, suggesting that virulence factors produced by P. gingivalis are involved in the exacerbation of respiratory tract infections such as aspiration pneumonia.


Assuntos
Infecções por Bacteroidaceae/complicações , Inflamação/patologia , Pulmão/patologia , Infiltração de Neutrófilos/imunologia , Pneumonia Pneumocócica/patologia , Porphyromonas gingivalis/fisiologia , Streptococcus pneumoniae/fisiologia , Animais , Infecções por Bacteroidaceae/microbiologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Inflamação/etiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/epidemiologia , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia
10.
Pathol Oncol Res ; 27: 1609976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955686

RESUMO

Purpose: The present study focused on exploring the associations of Porphyromonas gingivalis (P. gingivalis) infection and low Beclin1 expression with clinicopathological parameters and survival of esophageal squamous cell carcinoma (ESCC) patients, so as to illustrate its clinical significance and prognostic value. Methods: Immunohistochemistry (IHC) was used to detect P. gingivalis infection status and Beclin1 expression in 370 ESCC patients. The chi-square test was adopted to illustrate the relationship between categorical variables, and Cohen's kappa coefficient was used for correlation analysis. Kaplan-Meier survival curves with the log-rank test were used to analyse the correlation of P. gingivalis infection and low Beclin1 expression with survival time. The effects of P. gingivalis infection and Beclin1 downregulation on the proliferation, migration and antiapoptotic abilities of ESCC cells in vitro were detected by Cell Counting Kit-8, wound healing and flow cytometry assays. For P. gingivalis infection of ESCC cells, cell culture medium was replaced with antibiotic-free medium when the density of ESCC cells was 70-80%, cells were inoculated with P. gingivalis at a multiplicity of infection (MOI) of 10. Result: P. gingivalis infection was negatively correlated with Beclin1 expression in ESCC tissues, and P. gingivalis infection and low Beclin1 expression were associated with differentiation status, tumor invasion depth, lymph node metastasis, clinical stage and prognosis in ESCC patients. In vitro experiments confirmed that P. gingivalis infection and Beclin1 downregulation potentiate the proliferation, migration and antiapoptotic abilities of ESCC cells (KYSE150 and KYSE30). Our results provide evidence that P. gingivalis infection and low Beclin1 expression were associated with the development and progression of ESCC. Conclusion: Long-term smoking and alcohol consumption causes poor oral and esophageal microenvironments and ESCC patients with these features were more susceptible to P. gingivalis infection and persistent colonization, and exhibited lower Beclin1 expression, worse prognosis and more advanced clinicopathological features. Our findings indicate that effectively eliminating P. gingivalis colonization and restoring Beclin1 expression in ESCC patients may contribute to preventation and targeted treatment, and yield new insights into the aetiological research on ESCC.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Proteína Beclina-1/metabolismo , Neoplasias Esofágicas/microbiologia , Carcinoma de Células Escamosas do Esôfago/microbiologia , Porphyromonas gingivalis/isolamento & purificação , Apoptose , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/mortalidade , Infecções por Bacteroidaceae/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
11.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769513

RESUMO

The non-enzymatic addition of glucose (glycation) to circulatory and tissue proteins is a ubiquitous pathophysiological consequence of hyperglycemia in diabetes. Given the high incidence of periodontitis and diabetes and the emerging link between these conditions, it is of crucial importance to define the basic virulence mechanisms employed by periodontopathogens such as Porphyromonas gingivalis in mediating the disease process. The aim of this study was to determine whether glycated proteins are more easily utilized by P. gingivalis to stimulate growth and promote the pathogenic potential of this bacterium. We analyzed the properties of three commonly encountered proteins in the periodontal environment that are known to become glycated and that may serve as either protein substrates or easily accessible heme sources. In vitro glycated proteins were characterized using colorimetric assays, mass spectrometry, far- and near-UV circular dichroism and UV-visible spectroscopic analyses and SDS-PAGE. The interaction of glycated hemoglobin, serum albumin and type one collagen with P. gingivalis cells or HmuY protein was examined using spectroscopic methods, SDS-PAGE and co-culturing P. gingivalis with human keratinocytes. We found that glycation increases the ability of P. gingivalis to acquire heme from hemoglobin, mostly due to heme sequestration by the HmuY hemophore-like protein. We also found an increase in biofilm formation on glycated collagen-coated abiotic surfaces. We conclude that glycation might promote the virulence of P. gingivalis by making heme more available from hemoglobin and facilitating bacterial biofilm formation, thus increasing P. gingivalis pathogenic potential in vivo.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Complicações do Diabetes/fisiopatologia , Eritrócitos/metabolismo , Heme/metabolismo , Hemoglobinas/metabolismo , Periodontite/microbiologia , Porphyromonas gingivalis/patogenicidade , Animais , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Glicosilação , Hemeproteínas/química , Hemoglobinas/química , Cavalos , Periodontite/patologia , Porphyromonas gingivalis/isolamento & purificação , Porphyromonas gingivalis/metabolismo
12.
Biochem Biophys Res Commun ; 576: 80-85, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34482027

RESUMO

Epidemiological data have shown that periodontal bacterial infection, periodontitis, and oral squamous cell carcinoma have close relationship on the disease progress and risk. However, the specific role of periodontal microbes and their mechanism in the development of oral squamous cell carcinoma is not yet clear. In our previous work, metagenomic Illumina Mi-seq analysis was used to identify tstructure and abundance of periodontital microbiome. Accoding to the results, we used Porphyromonas.spp. and Fusobacterium.spp. as the periodontitis positive microbiota; Neisseria.spp and Corynebacterium.spp as periodontitis negative microbiota (their average relative abundance were >5%). These representative strains of the above genus were used to infect OSCC cells to explore their effect on tumor cell biology behavior, and detect the expression level of the gene in related to inflammation, migration, invasion and cell cycle. We find that periodontitis positive correlated microbiota had a promoting effect on the development of oral squamous cell carcinoma in vitro by regulating mRNA and protein expression of IL-6, IL-8, MMP-9 and Cyclin-D1. Periodontitis negative correlated microbiota had suppression effect on the development of oral squamous cell carcinoma in vitro analysis.


Assuntos
Neoplasias de Cabeça e Pescoço/microbiologia , Microbiota , Periodontite/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Corynebacterium/genética , Corynebacterium/isolamento & purificação , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Infecções por Fusobacterium/patologia , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/isolamento & purificação , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neisseria sicca/genética , Neisseria sicca/isolamento & purificação , Infecções por Neisseriaceae/complicações , Infecções por Neisseriaceae/microbiologia , Infecções por Neisseriaceae/patologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
13.
Anaerobe ; 72: 102449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543761

RESUMO

BACKGROUND: The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS: We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS: The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS: The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bacteroidaceae/microbiologia , Biofilmes , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/metabolismo , Porphyromonas gingivalis/metabolismo , Proteoma , Proteômica/métodos , Cromatografia Líquida , Biologia Computacional/métodos , Análise de Dados , Humanos , Espectrometria de Massas , Microbiota , Boca/microbiologia , Fatores de Virulência
14.
Anaerobe ; 72: 102458, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34547426

RESUMO

Porphyromonas gingivalis inhibits the release of CXCL8 by gingival epithelial cells and reduces their proliferation. We previously reported that Bifidocaterium sp. and Lactobacillus sp. immunomodulate gingival epithelial cells response to this periodontal pathogen, but their effects on re-epithelialization properties are still unknown. Herein we explored these activities of potential probiotics on gingival epithelial cells and clarified their mechanisms. The immortalized OBA-9 lineage was used to perform in vitro scratches. Twelve clinical isolates and commercially available strains of Bifidobacterium sp. and Lactobacillus sp. were screened. L. casei 324 m and B. pseudolongum 1191A were selected to perform mechanistic assays with P. gingivalis W83 infection and the following parameters were measured: percentage of re-epithelialization by DAPI immunofluorescence area measurement; cell number by Trypan Blue exclusion assay; CXCL8 regulation by ELISA and RT-qPCR; and expression of CXCL8 cognate receptors-CXCR1 and CXCR2 by Flow Cytometry. Complementary mechanistic assays were performed with CXCL8, in the presence or absence of the CXCR1/CXCR2 inhibitor-reparixin. L. casei 324 m and B. pseudolongum 1191A enhanced re-epithelialization/cell proliferation as well as inhibited the harmful effects of P. gingivalis W83 on these activities through an increase in the expression and release of CXCL8 and in the number of cells positive for CXCR1/CXCR2. Further, we revealed that the beneficial effects of these potential probiotics were dependent on activation of the CXCL8-CXCR1/CXCR2 axis. The current findings indicate that these potential probiotics strains may improve wound healing in the context of the periodontal tissues by a CXCL8 dependent mechanism.


Assuntos
Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/microbiologia , Interações Hospedeiro-Patógeno , Interações Microbianas , Porphyromonas gingivalis , Probióticos/administração & dosagem , Reepitelização , Biomarcadores , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Cicatrização
15.
J Alzheimers Dis ; 82(4): 1417-1450, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34275903

RESUMO

Porphyromonas gingivalis (Pg) is a primary oral pathogen in the widespread biofilm-induced "chronic" multi-systems inflammatory disease(s) including Alzheimer's disease (AD). It is possibly the only second identified unique example of a biological extremophile in the human body. Having a better understanding of the key microbiological and genetic mechanisms of its pathogenesis and disease induction are central to its future diagnosis, treatment, and possible prevention. The published literature around the role of Pg in AD highlights the bacteria's direct role within the brain to cause disease. The available evidence, although somewhat adopted, does not fully support this as the major process. There are alternative pathogenic/virulence features associated with Pg that have been overlooked and may better explain the pathogenic processes found in the "infection hypothesis" of AD. A better explanation is offered here for the discrepancy in the relatively low amounts of "Pg bacteria" residing in the brain compared to the rather florid amounts and broad distribution of one or more of its major bacterial protein toxins. Related to this, the "Gingipains Hypothesis", AD-related iron dyshomeostasis, and the early reduced salivary lactoferrin, along with the resurrection of the Cholinergic Hypothesis may now be integrated into one working model. The current paper suggests the highly evolved and developed Type IX secretory cargo system of Pg producing outer membrane vesicles may better explain the observed diseases. Thus it is hoped this paper can provide a unifying model for the sporadic form of AD and guide the direction of research, treatment, and possible prevention.


Assuntos
Doença de Alzheimer/patologia , Infecções por Bacteroidaceae/microbiologia , Colinérgicos , Ferro/metabolismo , Lactoferrina/metabolismo , Porphyromonas gingivalis/patogenicidade , Saliva , Anti-Infecciosos , Proteínas da Membrana Bacteriana Externa/metabolismo , Encéfalo/patologia , Extremófilos , Humanos
16.
J Virol ; 95(18): e0047921, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232744

RESUMO

HIV-1 elite controllers (EC) are a rare group among HIV-1-infected individuals who can naturally control viral replication for a prolonged period. Due to their heterogeneous nature, no universal mechanism could be attributed to the EC status; instead, several host and viral factors have been discussed as playing a role. In this study, we investigated the fecal metabolome and microbiome in a Swedish cohort of EC (n = 14), treatment-naive viremic progressors (VP; n = 16), and HIV-negative individuals (HC; n = 12). Fecal untargeted metabolomics was performed by four ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Molecular docking and biochemical microscale thermophoresis (MST) were used to describe the peptide-metabolite interactions. Single-cycle infectivity assays were performed in TZM-Bl cell lines using CCR5- and CXCR4-tropic HIV-1 strains. The microbiome analysis was performed using 16S rRNA sequencing. Th effects of metabolites on bacterial species viability were determined using several clinical isolates. We observed an enrichment of dipeptides in EC compared to VP and HC (adjusted P < 0.05). In silico analysis by molecular docking, in vitro biochemical assays, and ex vivo infection assays identified anti-HIV-1 properties for two dipeptides (WG and VQ) that could bind to the HIV-1 gp120, of which WG was more potent. The microbiome analysis identified enrichment of the genus Prevotella in EC, and these dipeptides supported bacterial growth of the genus Prevotella in vitro. The enrichments of the dipeptides and higher abundance of Prevotella have a distinct mechanism of elite control status in HIV-1 infection that influences host metabolism. IMPORTANCE HIV-1 elite controllers (EC) are a rare group among HIV-1-infected individuals who can naturally control viral replication for a prolonged period. Due to their heterogeneous nature, no universal mechanism could be attributed to the EC status; instead, several host and viral factors have been discussed as playing a role. In this study, we investigated the fecal metabolome and microbiome in a Swedish cohort of EC, treatment-naive viremic progressors (VP), and HIV-negative individuals (HC). We observed an enrichment of dipeptides in EC compared to the other two study groups. In silico and in vitro analyses identified anti-HIV-1 properties for two dipeptides that could bind to the HIV-1 gp120 and act as an HIV-1 antagonist. Furthermore, these dipeptides supported bacterial growth of the genus Prevotella in vitro that was enriched in EC, which influences host metabolism. Thus, increased levels of both dipeptides and Prevotella could provide beneficial effects for EC.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Dipeptídeos/farmacologia , Fezes/microbiologia , Infecções por HIV/prevenção & controle , HIV-1/fisiologia , Metaboloma , Prevotella/patogenicidade , Adulto , Infecções por Bacteroidaceae/tratamento farmacológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Estudos de Casos e Controles , Estudos de Coortes , Fezes/química , Feminino , Perfilação da Expressão Gênica , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Fenótipo , Replicação Viral
17.
BMB Rep ; 54(6): 323-328, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34078528

RESUMO

Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis. [BMB Reports 2021; 54(6): 323-328].


Assuntos
Infecções por Bacteroidaceae/complicações , Antígenos CD36/metabolismo , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/fisiopatologia , PPAR gama/metabolismo , Porphyromonas gingivalis/fisiologia , Animais , Infecções por Bacteroidaceae/microbiologia , Antígenos CD36/genética , Dieta Hiperlipídica , Progressão da Doença , Inflamação/metabolismo , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , PPAR gama/genética
18.
PLoS Pathog ; 17(5): e1009598, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015051

RESUMO

Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Doenças da Gengiva/microbiologia , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/enzimologia , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Animais , Ciclo Celular , Movimento Celular , Proliferação de Células , Células Epiteliais/microbiologia , Transição Epitelial-Mesenquimal , Gengiva/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Porphyromonas gingivalis/genética , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima
19.
Nat Rev Microbiol ; 19(9): 585-599, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34050328

RESUMO

The genus Prevotella includes more than 50 characterized species that occur in varied natural habitats, although most Prevotella spp. are associated with humans. In the human microbiome, Prevotella spp. are highly abundant in various body sites, where they are key players in the balance between health and disease. Host factors related to diet, lifestyle and geography are fundamental in affecting the diversity and prevalence of Prevotella species and strains in the human microbiome. These factors, along with the ecological relationship of Prevotella with other members of the microbiome, likely determine the extent of the contribution of Prevotella to human metabolism and health. Here we review the diversity, prevalence and potential connection of Prevotella spp. in the human host, highlighting how genomic methods and analysis have improved and should further help in framing their ecological role. We also provide suggestions for future research to improve understanding of the possible functions of Prevotella spp. and the effects of the Western lifestyle and diet on the host-Prevotella symbiotic relationship in the context of maintaining human health.


Assuntos
Microbiota , Prevotella/genética , Prevotella/fisiologia , Doenças Autoimunes/microbiologia , Infecções por Bacteroidaceae/microbiologia , Variação Genética , Humanos , Filogenia , Prevotella/classificação
20.
Cancer Res ; 81(10): 2745-2759, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34003774

RESUMO

Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various digestive cancers. However, whether P. gingivalis can promote colorectal cancer and the underlying mechanism associated with such promotion remains unclear. In this study, we found that P. gingivalis was enriched in human feces and tissue samples from patients with colorectal cancer compared with those from patients with colorectal adenoma or healthy subjects. Cohort studies demonstrated that P. gingivalis infection was associated with poor prognosis in colorectal cancer. P. gingivalis increased tumor counts and tumor volume in the ApcMin/+ mouse model and increased tumor growth in orthotopic rectal and subcutaneous carcinoma models. Furthermore, orthotopic tumors from mice exposed to P. gingivalis exhibited tumor-infiltrating myeloid cell recruitment and a proinflammatory signature. P. gingivalis promoted colorectal cancer via NLRP3 inflammasome activation in vitro and in vivo. NLRP3 chimeric mice harboring orthotopic tumors showed that the effect of NLRP3 on P. gingivalis pathogenesis was mediated by hematopoietic sources. Collectively, these data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome. SIGNIFICANCE: This study demonstrates that the periodontal pathogen P. gingivalis can promote colorectal tumorigenesis by recruiting myeloid cells and creating a proinflammatory tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2745/F1.large.jpg.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Células-Tronco Neoplásicas/patologia , Porphyromonas gingivalis/patogenicidade , Animais , Apoptose , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/patologia , Carcinogênese/imunologia , Carcinogênese/metabolismo , Proliferação de Células , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Células Mieloides/patologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/microbiologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...